A Bayesian analysis of human decision-making on bandit problems
نویسندگان
چکیده
The bandit problem is a dynamic decision-making task that is simply described, well-suited to controlled laboratory study, and representative of a broad class of real-world problems. In bandit problems, people must choose between a set of alternatives, each with different unknown reward rates, to maximize the total reward they receive over a fixed number of trials. A key feature of the task is that it challenges people to balance the exploration of unfamiliar choices with the exploitation of familiar ones. We use a Bayesian model of optimal decision-making on the task, in which how people balance exploration with exploitation depends on their assumptions about the distribution of reward rates. We also use Bayesian model selection measures that assess how well people adhere to an optimal decision process, compared to simpler heuristic decision strategies. Using these models, we make inferences about the decision-making of 451 participantswho completed a set of bandit problems, and relate variousmeasures of their performance to other psychological variables, including psychometric assessments of cognitive abilities and personality traits.We find clear evidence of individual differences in theway the participants made decisions on the bandit problems, and some interesting correlations with measures of general intelligence. © 2008 Elsevier Inc. All rights reserved.
منابع مشابه
Bayesian and Approximate Bayesian Modeling of Human Sequential Decision-Making on the Multi-Armed Bandit Problem
In this paper we investigate human exploration/exploitation behavior in a sequential-decision making task. Previous studies have suggested that people are suboptimal at scheduling exploration, and heuristic decision strategies are better predictors of human choices than the optimal model. By incorporating more realistic assumptions about subject’s knowledge and limitations into models of belief...
متن کاملBayesian and Approximate Bayesian Modeling of Human Sequential Decision-Making on the Multi-Armed Bandit Problem
In this paper we investigate human exploration/exploitation behavior in sequential-decision making tasks. Previous studies have suggested that people are suboptimal at scheduling exploration, and heuristic decision strategies are better predictors of human choices than the optimal model. By incorporating more realistic assumptions about subject’s knowledge and limitations into models of belief ...
متن کاملBayesian Modeling of Human Sequential Decision-Making on the Multi-Armed Bandit Problem
In this paper we investigate human exploration/exploitation behavior in sequential-decision making tasks. Previous studies have suggested that people are suboptimal at scheduling exploration, and heuristic decision strategies are better predictors of human choices than the optimal model. By incorporating more realistic assumptions about subject’s knowledge and limitations into models of belief ...
متن کاملHuman and Optimal Exploration and Exploitation in Bandit Problems
We consider a class of bandit problems in which a decision-maker must choose between a set of alternativeseach of which has a fixed but unknown rate of rewardto maximize their total number of rewards over a short sequence of trials. Solving these problems requires balancing the need to search for highly-rewarding alternatives with the need to capitalize on those alternatives already known to be...
متن کاملBuilding a maintenance policy through a multi-criterion decision-making model
A major competitive advantage of production and service systems is establishing a proper maintenance policy. Therefore, maintenance managers should make maintenance decisions that best fit their systems. Multi-criterion decision-making methods can take into account a number of aspects associated with the competitiveness factors of a system. This paper presents a multi-criterio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009